SUMMARY OF COURSES

[From the AY 2018-2019]

Sub Discipline: DEPARTMENTAL CORE

SUBJECT CODE	SUBJECT	L-T-P	CREDIT	DEVELOPER
MAC01	MATHEMATICS 1	3-1-0	4	
MAC02	MATHEMATICS 2	3-1-0	4	
MAC331	MATHEMATICS 3	3-1-0	4	

Basket of Open Elective-1 [4th semester]

SUBJECT CODE	SUBJECT	L-T-P	CREDIT	DEVELOPER
MAO441	Discrete Mathematics	3-0-0	3	
MAO442	Probability and Stochastic Processes	3-0-0	3	

Basket of Open Elective-2 [5th semester]

SUBJECT CODE	SUBJECT	L-T-P	CREDIT	DEVELOPER
MAO541	Mathematical Methods for Engineers	3-0-0	3	
MAO542	Linear Algebra	3-0-0	3	
MAO543	Modern Algebra	3-0-0	3	

Basket of Open Elective-5 [8th semester]

SUBJECT	SUBJECT	L-T-P	CREDIT	DEVELOPER
CODE				
MAO851	Operations Research	3-0-0	3	
MAO852	Advanced Numerical Analysis	3-0-0	3	
MAO853	Optimization Techniques	3-0-0	3	

		Department of I	Mathematic	S					
Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit		
Code		(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
MAC 01	MATHEMATICS - I	PCR	3	1	0	4	4		
Pre-requisite	es	Basic concepts of function, limit, differentiation and integration.							
Outcomes	 CO1: To Info bles CO2: To deve and its applica CO3: To intro CO4: To deve 	lop the basic conception in finding area, duce the fundament lop the concept of c	ots of integr volume, ce al concepts onvergence	al calculus enter of mas of vector ca	including muss, center of galculus	altiple integravity etc.	grals		
 CO3: To introduce the fundamental concepts of vector calculus CO4: To develop the concept of convergence Functions of Single Variable: Rolle's Theorem and Lagrange's Mean Value Theored (MVT), Cauchy's MVT, Taylor's and Maclaurin's series, Asymptotes & Curvatu (Cartesian, Polar form). Functions of several variables: Function of two variables, Limit, Continuity a Differentiability, Partial derivatives, Partial derivatives of implicit function, Homogeneo function, Euler's theorem and its converse, Exact differential, Jacobian, Taylor's Maclaurin's series, Maxima and Minima, Necessary and sufficient condition for maxima a minima (no proof), Stationary points, Lagrange's method of multipliers. (1 Sequences and Series: Sequences, Limit of a Sequence and its properties, Series of positi terms, Necessary condition for convergence, Comparison test, D Alembert's ratio te Cauchy's root test, Alternating series, Leibnitz's rule, Absolute and condition convergence. ((Integral Calculus: Mean value theorems of integral calculus, Improper integral and classifications, Beta and Gamma functions, Area and length in Cartesian and polar forms. (1 Multiple Integrals: Double integrals, Evaluation of double integrals, Evaluation of triple integrals, Change of order of integration, Change of variables, Area and volume by doub integration, Volume as a triple integral. (1 Vector Calculus: Vector valued functions and its differentiability, Line integral, Surfa integral, Gradient, Curl, Divergence, Green's theorem in the pla									
Text Books, and/or reference material	Text Books: 1. E. Kreyszig, A (2010). 2. Daniel A. Mur 3. Marsden, J. E; Reference Books 1. Tom Apostal, C 2. Thomas and Fi	dvanced Engineerin ray, Differential and Tromba, A. J.; Wei s: Calculus-Vol-I & II nny: Calculus and A	ng Mathema I Integral Ca nstein: Basi , Wiley Stud Analytic Ge	tics: 10th e alculus, Fb c Multivari dent Editior ometry, 11t	dition, Wiley & c Limited, able Calculus n, 2011. h Edition, Ad	v India Edi 2018. s, Springer ddison We	tion r, 2014. esley.		

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	3	2	3	1	1	-	-	1	1	1	2
	CO2	2	3	2	3	-	1	-	-	1	1	2	2
MACUI	CO3	2	3	2	3	-	1	1	-	-	2	2	2
	CO4	3	3	2	3	1	1	-	1	-	2	1	2

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Department of Mathematics												
Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours	_	Credit					
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total						
MAC 02	MATHEMATICS II	(PEL)	(L)	(1)	(P)	Hours	4					
MAC 02	MATHEMATICS - II	PCK	5	1	0	4	4					
Pre-requisite	28	Basic concepts of se	et theory, di	fferential e	quations and	probabili	ty.					
Course	CO1: Develo	p the concept of bas	ic linear alg	gebra and n	natrix equati	ons so as	to apply					
Outcomes	mathematical	methods involving ar	ithmetic, al	gebra, geon	netry to solve	e problem	s.					
	• CO2: To acqu	• CO2: To acquire the basic concepts required to understand, construct, solve and int differential equations.										
	CO3· Develor	 CO3: Develop the concepts of Laplace transformation & Fourier transformation w 										
	property to so	property to solve ordinary differential equations with given boundary conditions										
	are helpful in a	all engineering & res	earch work.	-								
— ·	CO4: To gras	p the basic concepts	of probabili	ty theory.	••••	1 '	1 (* 11					
Topics	Elementary algebra	raic structures: Grou	ip, subgrou	p, ring, subi	ing, integral	domain, a	ind field.					
Covered	(5)											
	Linear Algebra: V	ector space, Subspa	ces, Linear	dependence	e and indepe	ndence of	vectors,					
	Linear span, Basi	s and dimension o	f a vector	space. Ra	ink of a m	atrix, Ele	ementary					
	transformations, M	atrix inversion, Solu	tion of syst	em of Line	ar equations,	Eigen va	lues and					
	Eigen vectors, Cay	ley-Hamilton Theore	m, Diagona	lization of	matrices.		(15)					
	Ordinary Differen	tial Equations: Exi	stence and i	miqueness	of solutions o	of ODE (S	tatement					
	Only). Equations of	f first order but highe	r degree. Cl	airaut's equ	ation. Second	d order dif	ferential					
	equations, Linear of	lependence of solution	ons, Wrons	kian detern	ninant, Meth	od of var	iation of					
	parameters, Solutio	on of simultaneous eq	uations.		,		(12)					
	Equation contrast Do	aia nuonantiaa Diniahl	at a andition	. Cina aami	a Casina sa	mias Com						
	(4)	sic properties, Dirichi	et condition	is, sine seri	es, Cosine se	nes, Conv	ergence.					
	Laplace and For	urier Transforms:	Laplace t	ransforms,	Inverse La	place tra	nsforms,					
	Convolution theore	em, Applications to C	rdinary diff	ferential equ	ations.							
	Fourier transforms	. Inverse Fourier trai	nsform. Fou	rier sine a	nd cosine tra	unsforms a	and their					
	inversion, Propertie	es of Fourier transform	ms, Convol	ution.			(10)					
	Probability: Histo	rical development of	the subject	and basic	concepts, Ax	tiomatic d	efinition					
	of probability, Exa	mples to calculate p	robability,	Random nu	mbers. Rand	dom varia	bles and					
	probability distribu	tions, Binomial distri	ibution, Nor	rmal distrib	ution.		(10)					
Text Books,	Text Books:	Advanced Enginee	ring Matha	motion 10 ^t	h adition W	ilov India	Edition					
reference	(2010).	, Auvanceu Enginee	mig Maine	matics. 10		ney muia	Lation					
material	2. Gilbert Stran	2. Gilbert Strang, Linear algebra and its applications (4th Edition), Thomson (2006).										
	3. Shepley L. R	3. Shepley L. Ross, Differential Equations, 3 rd Edition, Wiley Student Edition (2017).										
	Doforence Docker											
	1. S. Kumaresan.	Linear algebra - A G	eometric ar	proach. Pre	entice Hall of	f India (20)00).					
	2. C. Grinstead, J.	. L. Snell, Introductio	on to Probab	oility, Amer	ican Mathen	natical So	ciety.					

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAC02	CO1	3	3	2	1	2	-	2	-	-	-	1	2
	CO2	3	3	2	2	2	-	2	-	-	1	-	2
	CO3	3	3	2	2	3	1	1	-	1	1	1	2
	CO4	3	2	1	3	2	1	1	1	1	-	-	2

Correlation levels 1, 2 or 3 as defined below:

		Department of Mathematics						
Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MAC331	MATHEMATICS-III	PCR	3	1	0	4	4	
Pre-requisite	es	Basic knowledge	of topics in	ncluded in N	MAC01 & M	AC02	L	
Pre-requisite Course Outcomes Topics Covered	 CO1: Acquire t engineering. CO2: To unders for the intractab CO3: To unders and applied con CO4: To under solving variou Partial Differential of first order quasility and Nonhomogeneo Particular integral; C Boundary Value Pro equation and two dim Numerical Method Backward and Lag algebraic/transcender and Simpson's 1/3	Basic knowledge the idea about mate stand the common n le mathematical pro- stand the basics of texts. stand the optimization stand the optimization stand the optimization texts. stand the optimization texts. Equations (PDE): near PDE; Charpit us linear PDE; Charpit us linear PDE; Charpit us linear PDE with Classification of sector blems involving on nensional Laplace of s: Significant digit grange's interpolat ntal equations by B rule for numerical	of topics in thematical f umerical m oblems. complex an fon methods imization Formation method for th constant cond order I e dimension equation. as, Errors; I tion formu Bisection an I integration	cormulation cormulation ethods to ol alysis and i s and alge problems. n of PDEs; first order coefficient inear PDE nal wave ec Difference lae; Nume d Newton-l n; Euler's	MAC01 & M s of phenome btain the app its role in mo orithms dev Lagrange m nonlinear PI ts: Complin and canonic quation, one operators; N erical solutio Raphson met method and	AC02 ena in phy roximate s odern math eloped for DE; Hom nentary F al forms; dimension Newton's I ons of m hods; Tra modified	vsics and solutions hematics or solution ogenous function, Initial & nal heat [14] Forward, nonlinear pezoidal I Eular's	
	methods for solving	first order differenti	al equation	S.			[14]	
	Complex Analysis: I function; Harmonic f integration; Cauchy Laurent's theorem (S [17]	Functions of comple function; Conformal 's integral theore: Statement only); Sir	erivative; ormation; (Γaylor's s residue	Analytic Complex theorem, theorem.				
	Optimization: Mathematical Preli Polyhedra.	minaries: Hyperpla	nnes and Lir	near Varieti	es; Convex S	ets, Polyte	opes and [2]	
	Linear Programmi problem (LPP); Gra solutions; Simplex M	ing Problem (LPP): Introduction; Formulation of linear program raphical method for its solution; Standard form of LPP; Basic fee Method for solving LPP.						

Text Books,	Text Books:
and/or	1. An Elementary Course in Partial Differential Equations-T. Amarnath
reference	2. Numerical Methods for scientific & Engineering Computation- M.K.Jain,
material	S.R.K. Iyengar & R.K. Jain.
	3. Foundations of Complex Analysis- S. Ponnuswami
	4. Operations Research Principles and Practices- Ravindran, Phillips, Solberg
	5. Advanced Engineering Mathematics- E. Kreyszig
	Reference Books:
	1. Complex Analysis-L. V. Ahfors
	2. Elements of partial differential equations- I. N. Sneddon
	3. Operations Research- H. A. Taha

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	3	2	2	1	2	-	-	-	-	2
MAC331	CO2	3	3	2	2	2	1	2	-	-	-	1	2
MAC551	CO3	3	3	2	2	3	-	1	-	-	1	-	2
	CO4	3	2	2	3	2	1	1	-	1	-	-	2

Correlation levels 1, 2 or 3 as defined below:

		Department of	Mathematio	cs						
C	T: (1, of (he come)	Descent	T - (-1 N		1		Cur 1't			
Course	I the of the course	Program Core (PCR) /	I otal Nu	mber of cor	Practical	Total	Credit			
Coue		Electives (PEL)	(L)	(T)	(P)	Hours				
MAO441	Discrete	PEL	3	0	0	3	3			
	Mathematics									
Pre-requisi	ites	Course Assessment methods (Continuous (CT), Mid-term assessment								
~		(MA) and end assessment (EA))								
Set Theory	1	СТ+ЕА								
Course Outcomes Topics Covered	 CO1: To en and Artifici CO2: To en CO3: Studiengineering 1. Introduce Introduce principle Generatient [6] 2. Mathem propositien consistent [6] 3. Propositien forms, Terminal 	able the students to al Intelligence relate able the students to ents will have kn and physical problection tion to set theory; co tion to Combinato e, The pigeon-hole ng function, Partial atical logic, Predica- ion and proof, No ney and completene ional Calculus: Wel Yruth of algebraic sy	apply the b ed problems solve probl owledge or ems. ombination rics, Coun- principle a order relati nue logic, B tion of int ss. 1-formed for ystems, Cala	asic concep s. ems of con f Graph T of sets; pov ting techni and its app ons; POSE asic logical erpretation, ormulas, Tai	ot of Logic to abinatorics. Theory which wer sets; fini ques, The i lications, Ro TS. operation, T Method of utologies, Equi	b solve eng h arises i te and infi nclusion-e ecurrence Fruth table proofs, f proofs, f ferent form	in many nite sets, xclusion relation, es, Logic Validity, , Normal ns of the			
	 [5] 4. Relation represen binary reflexive [7] 5. Lattice Differen to synthe Permuta [5] 6. Introduc function and nor generatin [5] 7. Path, c 	s, Equivalence rela tation of relations, ' natrices and digrap e, symmetric and tra Theory and Introd t representations of esis of circuits, Con tion function and gr tion of discrete m s, Linear recurrence h-homogeneous cas ng functions.	tion and e Warshall's whs; operati nsitive clos uction to l Boolean fu position of owth of fur umeric funde relations ses), Soluti g theorem	quivalence algorithm, ons on rela ures. Boolean al inctions, Ap function, f functions, ctions, Asy with const on of line , Bipartite	classes, Dia Representatiations. Close gebra and Hoplication of functions for emptotic behant coefficies ar recurrence graphs, S	agraphs, C ons of rela ure of a r Boolean fu Boolean f computer navior, Ge nts (homo ce relation ub-graphs)	computer ations by elations; unctions, unctions Science, enerating ogeneous as using , Graph			
	isomorp Planar algorithr [7]	cles, Handshaking theorem, Bipartite graphs, Sub-graphs, Graph nism, Operations on graphs, Eulerian graphs and Hamiltonian graphs, graphs, Euler formula, Traveling salesman problem, Shortest path ns, Minimum spanning tree algorithms, Maximum flow algorithms.								

Text Books,	Text Books:
and/or	1. Discrete Mathematics and its Applications - Kenneth H. Rosen 7th Edition - Tata
reference	McGraw Hill Publishers – 2007.
material	2. Elements of Discrete Mathematics, C. L Liu, McGraw-Hill Inc, 1985. Applied
	Combinatorics, Alan Tucker, 2007.
	Reference Books:
	1. Concrete Mathematics, Ronald Graham, Donald Knuth, and Oren Patashnik, 2nd
	Edition - Pearson Education Publishers - 1996.
	2. Combinatorics: Topics, Techniques, Algorithms by Peter J. Cameron, Cambridge
	University Press, 1994 (reprinted 1996). Topics in Algebra, I.N. Herstein, Wiley,
	1975.
	University Press, 1994 (reprinted 1996). Topics in Algebra, I.N. Herstein, Wiley, 1975.

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAO441	CO1	3	3	3	2	3	2	1	-	-	-	1	2
	CO2	3	2	3	3	2	1	1	-	1	-	1	1
	CO3	3	3	2	3	2	2	2	1	-	1	3	1

Correlation levels 1, 2 or 3 as defined below:

		Department of	Mathematic	CS					
Course Code	Title of the course	Program Core (PCR) /	Total Nu	mber of cor	tact hours		Credit		
		Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours			
MAO442	Probability and Stochastic Processes	PEL	3	0	0	3	3		
Pre-requis	ites	Knowledge of differential and integral calculus, basics of probability at MAC02							
Outcomes	 CO2: Introdetc. CO3: To hi etc. 	luce to students the p ghlight the roles of s	probability : stochastic pi	models in p rocesses in j	hysics, engir physics, soci	neering, bi al science	ology , finance		
Topics Covered	Introduction: Multiplication R	Axiomatic defini ules, Stochastic inde	tion of Prependence, I	robability, Baye's theo	Conditional rem and app	Probabil lications.	lity and (8)		
	Random Varia continuous, disc distribution, Nor bivariate normal	ables & Probabili crete and continuou rmal distribution, Ex distribution.	ty Distribu us probabil aponential d	ution: Ran ity distribu listribution,	dom variab ttions, Binor Joint probab	les: Disci mial and bility distr	rete and Poisson ibutions, (6)		
	Mathematical I Variance and cov of Random V	Expectation: Expectation: Expectation: Expectation variance of random variables, Conditio	tation of rat variables, Me nal Expec	ndom varia eans and var tations. C	ble, Properti riances of Lin orrelation	es of Exp near Comb coefficient	ectation, binations t. (6)		

	Functions of Random Variable: Transformation of Variables, Moments and Moment
	Generating Functions, Characteristics functions, Normal Approximation to Binomial. (6)
	Stochastic Processes: Stochastic Process: definition and examples, Stationary Processes,
	Auto correlation, Auto Covariance, cross correlative coefficient, Martingales. (6)
	Markov Chains: Definitions and examples of Markov chains, Chapman- Kolmogorov
	Equations & classification of states, Ergodic Markov Chain, Applications of Markov
	chains, Time reversible Markov chains. (6)
	Poisson Process: Poisson Process, Inter-arrival & waiting time distributions, Non-
	homogeneous Poisson Process, Conditional Poisson process. (4)
Text Books,	Text Books:
and/or reference	1. T. Veerarajan: Probability, Statistics and Random Process, Tata McGraw-Hill Education, 2002.
material	2. Ronald E Walpole and Raymond H Myers: Probability and Statistics for
	Engineers and Scientists
	3. J. Medhi, Stochastic Process, Wiley Eastern Limited, Second Edition, 1994.
	 C. Grinstead and J. Snell, Introduction to probability, American Mathematical Society, 1997
	Roy D Yates and David J. Goodman, Probability and stochastic processes, John Wiley and Sons, 1998.

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAO442	CO1	3	3	3	3	2	1	-	1	1	1	1	1
	CO2	3	3	3	3	3	-	-	-	-	-	-	-
	CO3	3	3	3	3	3	-	1	-	-	_	-	-

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Department of Mathematics										
Course	Title of the course	Program Core	Total Nu	mber of cor	tact hours		Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
MAO541	Mathematical	PEL	3	0	0	3	3			
	methods for									
	engineers									
Pre-requisite	es	Course Assessmen	nt methods	(Continuous	s (CT), Mid-	term asses	sment			
		(MA) and end assessment (EA))								
MAC02 (M	athematics-II)	CT+EA	СГ+ЕА							
Course	CO1: Studen	nts will be able to u	nderstand a	ind solve th	e difference	equations	, that are			
Outcomes	used to mod	l various engineering problems.								
	• CO2: To en	able the students to	apply integ	gral transfor	ms to proble	ems formu	ilated on			
	finite or infi	nite domains and also	to solve en	igineering a	nd physical p	oroblems i	nvolving			
	PDEs in a si	mpler way using inte	egral transfo	orms.						
	• CO3: To ena	able the students to set	olve a discr	ete systems	using Z- Tra	insform.				
	• CO4: Studer	its will have an in-de	dge of pow	er series solu	tion of dif	ferential				
	equations an	id also will learn abo	out special i	functions w	hich arise in	many eng	gineering			
Taulas	and physical	problems.	. 1:00	E			·			
Topics	Difference Equa	ations: Formation of	difference	equation, F	irst and high	er order d	Interence			
Covered	difference equations	iction of non-finear	unterence	equation	into intear	ionii, soi	(6)			
	7-transform:	ome standard 7 - tr	ansforms 1	Properties (of Z -transfor	m Damn	ing rule			
	Shifting rule In	itial and final value	theorem (onvolution	theorem In	verse Z -tr	ansform			
	Solution of diffe	rence equations usin	σ Z-transfo	rm	theorem, m	verse Z-ti	(6)			
	Series Solution	of Ordinary Differ	ential Equ	ini. Intions: Va	lidity of seri	es solutio	n Series			
	solution about a	n ordinary point and	about a re	gular singul	ar point. Bes	sel's equa	ation and			
	Bessel functions	. Recurrence relation	ns of Besse	el functions.	Generating	function	for $J_n(x)$.			
	Orthogonality of	Bessel functions, L	egendre's e	quation and	Legendre fu	inctions, I	Legendre			
	polynomial, Roc	lrigue's formula, Ge	nerating fu	nction for 1	$P_n(x)$, Recur	rence rela	tions for			
	$\hat{P}_n(x)$, Orthogona	ality of Legendre pol	ynomial.				(15)			
	Application of 1	Fourier Transforms	s: recapitula	ation of Fou	rier transform	n & its pr	operties,			
	solution of partia	al differential equation	ons using Fo	ourier transf	form		(6)			
	Application of I	Fourier Transforms	in mathen	natical stati	istics		(2)			
	Finite Fourier	Transforms: Finite	Fourier Si	ine & Cosi	ne transform	, basic pr	operties,			
	applications of f	inite Fourier Sine &	c Cosine tra	ansform in	the solution	of bounda	ry value			
	problems						(7)			
Text Bool	is, Text Books:		* . ******	1.0						
and/or	1. S. L. Ross: Dif	ferential Equations:	John Willer	y and Sons.						
reference	2 I N Snaddon:	2 I. N. Spaddon: The use of Integral Transforms, McGray, Hill, 1074								
material	2. I. IN. Sheudoll.	The use of integral	I Talistoriis,	, MCGIaw-I	1111, 1974.					
	3. E. Kreyszig: A	dvanced Engineering	Mathemati	ics: 10 th editi	on, Wiley In	dia Editio	n (2010).			
	 Reference Books: 1. M.D. Raisinghania: Advanced differential equations: S. Chand Publication. 2. L. Debnath & D. Bhatta: Integral Transforms and their applications: 2nd Edition, Chap & Hall/CRC. 									

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAO541	CO1	3	3	3	2	1	1	1	-	1	1	-	2
	CO2	3	3	2	2	1	1	1	-	1	1	-	2
	CO3	3	2	2	2	2	1	1	-	1	1	-	3
	CO4	3	2	2	2	2	1	1	-	1	1	1	3

		Department of	mathematic	s						
Course	Title of the course	Program Core	Total Nu	mber of con	tact hours		Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
MAO542	Linear Algebra	PEL	3	0	0	3	3			
Pre-requisi	tes	MAC02								
Course Ass	sessment methods	CT+EA								
(Continuou	is (CT) and end									
assessment	(EA))		<u>.</u>				~ .			
Course	• CO1: Solve	systems of linear e	quations us	ing several	methods, in	ncluding (Gaussian			
Outcomes	elimination a	nd matrix inversion	6.1							
	• CO2: Demo	nstrate understanding	g of the con	icepts of ve	ctor space ar	id subspac	e, linear			
	independence	e, span, and basis and	use these fo	or analysis o	of matrices an	d systems	of linear			
	equations.		1			1. 1	1			
	• CO3: Detern	f motive algorithms	1 elgenvecto	ors and sor	ve eigenvalu	e problem	is; apply			
	diagonalizabi	le and non diagonal	io illear izable matr	ices: demo	nstrate under	retanding	of inner			
	products and	associated norms		ices, uemo	instrate unde	Istanung	of filler			
Topics	Systems of	linear equations Ma	trices Flen	pentary row	and column	operation	Row-			
Covered	reduced ech	elon matrices Gauss	sian elimina	tion LU-D	ecomposition	i operation i	(6)			
00,000	Vector space	es Subspaces I inear	snan Uinea	ar denenden	ce and indep	ndence I	Rasis and			
	dimension	Ordered basis and co	ordinates	Row space	and column	space Di	rect-sum			
	decompositi	ons.	, son annatos, s	row space		spuee, DI	(12)			
	• Linear tran	sformations. Rank-	Nullity the	eorem. Ma	trix represe	ntation c	of linear			
	transformati	ons.		· · · · · · · · · · · · · · · · · · ·			(7)			
	 Eigenvalues 	and eigenvectors. C	avlev-Hami	lton theore	n. Diagonali	zation of I	Matrices.			
	Minimal pol	vnomial, Rational ca	nonical for	m, Jordan c	anonical form	n.	(13)			
	Inner Produc	ct Spaces, Orthonorn	nal Basis, G	ram-Schmi	dt Theorem.		(4)			
		1								
Text Books	s, Text Books:									
and/or	1. K. Hoffman a	nd R. Kunze, Linear	Algebra, Pr	entice Hall	of India, Ne	w Delhi, 1	.990.			
reference	2. S. K. Mapa, H	ligher Algebra, Sarat	Book Dist	ribution, 20	00.					
material	Reference Book	KS:								
	1. S. Lang, Line	ar Algebra, Springer	, Third Edit	ion.		D . I . 1	2000			
	2. S. Kumaresan	an, Linear Algebra: A Geometric Approach, PHI Learning Pvt. Ltd., 2000.								
Text Books and/or reference material	s, Text Books: 1. K. Hoffman a 2. S. K. Mapa, H Reference Book 1. S. Lang, Line 2. S. Kumaresan	nd R. Kunze, Linear Iigher Algebra, Sarat ss: ar Algebra, Springer , Linear Algebra: A	Algebra, Pr Book Distr , Third Edit Geometric A	rentice Hall ribution, 20 ion. Approach, H	of India, Ne 00. PHI Learning	w Delhi, 1 Pvt. Ltd.,	.990. , 2000.			

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAO542	CO1	3	2	1	-	1	-	1	1	-	-	-	2
	CO2	3	3	1	1	1	-	1	-	-	-	-	2
	CO3	3	3	2	1	1	1	1	-	1	1	1	2

Correlation levels 1, 2 or 3 as defined below:

Department of Mathematics									
Course	Title of the course	Program Core	Total Nu	mber of con	tact hours		Credit		
Code		(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
MAO543	Modern Algebra	PEL	3	0	0	3	3		
Pre-requisi	tes	Course Assessmen (EA))	nt methods (Continuous	s (CT) and er	nd assessm	nent		
NIL		CT+EA							
Course Outcomes	 CO1: Acqui CO2: To uno CO3: To lea 	re an idea about abst derstand the principle rn the basic tools of	ract mathen e of symme vector space	natical prob tric objects es, coding tl	lems heory and cry	yptograph	V		
Topics	Preliminary conc	ept: Sets and Equiva	alence relati	ions and pa	rtitions, Divi	sion algor	rithm for		
Covered	integers, primes,	unique factorizations	, Chinese R	emainder T	heorem, Eule	er φ-functi	on. [10]		
	Groups: Cyclic g Theorem, Norma Cauchy's theorem Rings: Ideals and	roups, Permutation groups, Isomorphism of groups, Cosets and Lagrange's al subgroups, Quotient groups, Group homomorphisms, Cayley's theorem m. [12] d Homomorphism, Prime and Maximal Ideals, Quotient Field of an Integra							
	Domain, Polynon	nial Rings.					[10]		
	Fields: Vector sp	ace, Field extensions	, Finite Fiel	lds.			[10]		
Text Books and/or reference material	s, Text Books: 1. J. B. Frale 2. I. N. Herster Reference Book 1. T. W. Hung 2. D. S. Dum Inc., 1999. 3. G. A. Galli	igh, A First Course i ein, Topics in Abstra s s: gerford, Algebra, Spi mit, R. M. Foote, Al an, Contemporary A	n Abstract A ct Algebra, ringer, 2009 ostract Alge bstract Alge	Algebra, Ac Wiley East). bra, Second ebra, Naros	ldison Wesle ern Limited, d Edition, Jo a Publishers,	y, 2013. 1975. hn Wiley 2017.	& Sons,		

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAO543	CO1	3	3	2	2	1	-	1	1	-	-	1	1
	CO2	3	3	1	1	1	1	1	-	-	-	-	-
	CO3	3	2	1	3	2	-	-	-	1	1	-	1

Correlation levels 1, 2 or 3 as defined below:

		Department of I	Mathematics	8						
Course	Title of the course	Program Core	Total Nur	mber of con	tact hours		Credit			
Code		(PCR) / Electives (DEL)	Lecture	Tutorial	Practical	Total				
MA 0951	On anotiona Dassant	Electives (PEL)	(L)	(T)	(P)	Hours	2			
MAU851	Operations Research	PEL	3	0	0	3	3			
Pre-requisite	26	Basic concepts of S	Set Theory	Linear Prog	ramming Pro	 hlem_Nety	work and			
1 ie-iequisit	23	Game Theory	bet meory,	Linear 110g	ranning 110	bieiii, ivet	work and			
Course Outcomes	 CO1: To under formulation o CO2: To acquire applications. CO3: To get h 	erstand the origin of f different Problems lire knowledge on fu	different Problems. ire knowledge on fundamentals of Linear Programming and also to learn its							
	acquainted wi	th designing & amp;	planning of	various pro	ject related p	roblems.				
	• CO4: To get t	he basic Concepts of	f decision m	aking under	r competitive	situations	•			
Topics Covered	Overview of Oper problems, Develor Evaluation of the Linear Program Convex sets, Extr Algorithm, Degen Assignment probl Network Analysi minimal spanning Job and events, Co of floats. Resource planning. Uncerta Game Theory: M point, Game problem 2×2 game problem problem.	erations Research: (oping OR models, ' solution and implem ming and its Appli eme points and conv heracy, Duality theo ems, Sensitivity and s: Introduction to ne tree, Flows in network onstruction of arrow of the allocation and lead in duration and PER Maxmin and Minma lems without saddle n without saddle poin on rule of a game pri without saddle poin	Origin of Ol Testing the eentation. ications: Ve vex polyhedrory, primal lysis. etwork analy vorks, Maxi diagrams, D ast cost plan T, PERT CO x principle, point, Pure nt, Graphica oblem (Dor t, Reductior	R and its de adequacy ector spaces ral sets The dual algori ysis, Shortes mal flow pr beterminatio nning, Use OST system , Two-perso e strategy ar al method o ninance rule n of a game	finitions, For of the mode s, Basis, Line ory of Simple thms, Transp st path proble roblems. Defi n of critical pa of network f . Crashing. on Zero-sum nd mixed stra f solution for e), Algebraic problem to 1	mulation of el, Model ear transfor ex method, portation p em, Constr inition of a aths and ca flows for 1 games wi ttegy, Solu $n\times 2$ and 2 method of inear prog	of the OR solution, (4) rmations, Simplex oroblems, (14) uction of a project, dculation least cost (12) th saddle ttion of a 2×n game f solution ramming (12)			
Text Books, and/or reference material	Text Books:1. J. K. Sharma: F2. F.S. Hiller and McGraw-Hill Ir3. Ravindran, Phil Edition.Reference Books1. Kanti Swarup Chand & Cor2. Anderson, D. Management3. Sharma, S. D4. H. A. Taha, O	Fundamentals of Ope G. J. Leiberman, Intr international Edition, lips, Solberg, Operat : o, P. K. Gupta and M npany. R., Sweeney, D. J. a Science, St. Paul Wa ., Operations Research	rations Rese roduction to 1995. ions Resear fan Mohan, fan William est Publishin ch, Kedar N –An introdu	earch, Macm Operations ch Principle Operations s, T. A., An ng Company (ath and Rar action, PHI	nillan. Research (6t es and Practice Research- An Introduction y, 1982. n Nath, Meer	th Edition) es, Wiley Introduct to ut, 1995.	, India ion, S.			

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAO851	CO1	2	3	2	2	1	1	1	-	-	-	1	2
	CO2	2	3	2	1	1	2	2	-	1	2	2	2
	CO3	3	3	2	3	1	-	1	-	2	2	2	2
	CO4	2	2	3	1	2	2	2	1	2	2	2	1

Correlation levels 1, 2 or 3 as defined below:

Department of Mathematics												
Course	Title of the course	Program Core Total contact hours (Per week)										
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
MAO852	Advanced	PEL	3	0	0	3	3					
	Numerical Analysis	~ .										
Pre-requisi	tes	Course Assessment methods (Continuous (CT) and end assessment										
		(EA))										
Basics of L	inear Algebra &	CT+EA										
Numerical	vietnods		1-11-1	C		1 . 1	-1-111 1					
Outcomes	• COI: Devel	op problem solving s	KIIIS by diff	ierent nume	rical method	s and also	skill in					
Outcomes		to work with low oor	convergent	bility and a	according the	0001120011	of					
	• CO2. Help	to work with key cor	icepis of sta	ionity and a	ssessing the	accuracy	Л					
		o write algorithm .co	mnutationa	1 stone & fl	ow chart whi	ch haln in						
	developing	computer program	inputationa	i sups a m		en neip m						
	• CO4· Help t	o solve various scien	tific and en	oineerino n	roblems by d	ifferent n	umerical					
	methods.		une une en	Sincering p	loolenis by a		annerneur					
Topics	Numerical solut	ion of Algebraic and	transcender	ntal equation	ns (Method c	of Iteration	ı,					
Covered	Newton-Raphso	n method), converge	nce and erro	ors.	`		(3)					
(with lectu	re											
hours)	Solution of syste	n of equations by Direct method (Gauss-elimination, Gauss Jordon, L-U										
	decomposition)	and Iteration method	(Jacobi, Ga	auss-Seidel)	, Convergen	ce analysi	s and					
	errors.						(7)					
	Eigen velues en	d Eigan waatan hu n	www.matha	4			(2)					
	Eigen values and	a Eigen vectors by po	ower metho	d .			(3)					
	Interpolation- N	ewton's divided diffe	erence, cubi	c spline, He	ermite poly, e	error in						
	interpolation, Le	ast square approximation		(6)								
	Numerical differ	entiation and integration (Trapezoidal rule, Simpson's 1/3 rd rule,										
	Simpson's 3/8 th	ule), Error analysis.										
	Numerical solut	ion of ordinary differ	on of ordinary differential equations (Taylor series method, Euler's &									
	Modified Euler	s method, Runge-Ku	tta method)	, Finite diff	erence soluti	on of boui	ndary					
	value problem.						(9)					
	Numerical solut	ion of partial differer	tial equation	ns of hyper	bolic (wave	equation)						
	parabolic (heat e	equation) elliptic (La	inlace and F	oisson equi	ation) type	equation),	(9)					
	puluoone (neur c	quality, empire (12	ipiace and I	onsson equ	alloll) type:		(2)					
Text Book	s, Text Books:											
and/or	1. Introductor	ry Methods of Nume	rical Analys	sis- S.S.Sast	try (PHI).							
reference	2. Numerical	Methods for scientif	ic & Engine	eering Com	putation- M.	K. Jain, S.	R.K.					
books	Iyengar &	R.K. Jain (New Age	Internation	al (P) Ltd.).								
	Reference Bool	KS:										
	I. Numerical	Mathematical Analy	s1s- J.B. Sc	arborough (Uxtord & IB	5H).	· 、					
	2. A friendly	introduction to Num	erical Analy	ysis- Braine	Bradie (Pear	rson Educ	ation).					
1												

Mapping of CO (Cours	se outcome) and PC) (Programme	Outcome)
----------------------	--------------------	--------------	----------

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAO852	CO1	3	3	2	2	3	1	2	-	-	3	1	2
	CO2	2	3	2	2	1	2	1	1	1	2	1	2
	CO3	2	2	1	1	-	-	1	-	-	1	-	2
	CO4	3	2	2	2	2	2	2	-	2	3	2	3

Department of Mathematics													
Course	Title of the course	Program Core Total Number of contact hours											
Code		(PCR) /	Lecture	Tutorial	Practical	Total							
		Electives (PEL)	(L)	(T)	(P)	Hours							
MAO853	Optimization	PEL	3	0	0	3	3						
Dra raquisit	Techniques	Vactor Space on	d Matricas	Lincor Tre	neformation	- Figany	aluos						
rie-iequisit		and Eigenvectors	u Maurces,	Linear II	unsionnation	is, Eigenv	alues						
Course	CO1: Abilit	v to develop a kno	wledge in	the field o	f optimizatio	on techni	aues						
Outcomes	and their bas	sic concepts, princ	ciples and a	lgorithms.	r optimizati		ques						
	CO2: Abilit	v to understand fundamentals of linear programming. Integer											
	programmin	g and Dynamic pr	g and Dynamic programming.										
	CO3: Abilit	y to apply the theo	ory of optin	nization m	ethods for n	nodelling							
	various type	s of decision mak	ing probler	ns.		C							
	• CO4: Ability	to solve the mather	natical resul	lts and num	erical algorit	hms of							
	optimization	theory to concrete H	Engineering	and Manag	ement proble	ems.							
Topics	Basic Concepts:	Formulation of ma	thematical	programmi	ng problems	; Classific	cation of						
Covered	optimization prob	lems; Optimization	techniques -	– classical a	and advanced	technique	es (5)						
	Optimization us	ing Calculus: Con	vexity and	concavity	of functions	s of one	and two						
	variables; Optimi	zation of function	of multiple	variables	subject to eq	uality con	nstraints;						
	Lagrangian functi	on; Optimization of	of function	of multiple	e variables s	ubject to	equality						
	constraints; Hessia	an matrix formulation	on (7)										
	Linear Program	ning: Standard form	n of linear p	rogramming	g (LP) proble	m; Canon	ical form						
	of LP problem; As	ssumptions in LP M	odels; Grap	hical metho	d for two van	riable opti	mization						
	problem; Motivat	ion of simplex met	hod, Simple	ex algorithi	m and constr	ruction of	simplex						
	tableau; Revised	simplex method; I	Duality in l	LP; Primal	dual relatio	ns; Dual	Simplex						
	transportation ass	ignment TSP probl	nality analy	ysis; boun	ded variable	es; Exam	ples for						
	transportation, ass	ignition, 151 probl	(10)										
	Dynamic Progra	amming: Represer	ntation of	multistage	decision p	rocess; T	ypes of						
	multistage decisio	n problems; Conce	pt of sub op	otimization	and the prine	ciple of o	ptimality						
	(8)												
	Integer Program	ming: Integer linear	r programmi	ing; Branch	and Bound a	lgorithm;	Concept						
	of cutting plane m	ethod; Mixed intege	er programn	ning; Soluti	on algorithm	s. (8)	-						
	A dyangod Taniag	in Ontimization.	Direct and in	direct coord	h mathada. L	Iouristia a	nd Mata						
	Heuristic Search r	nethods: Multi obje	ctive optimi	zation (10))	icuitstic a	nu meta-						
	ricultstic Scalen i	nemous, muni obje	euve optim	Zation. (10)								
Text Books,	Text Books:		o c \cdot c	ודי	ln (NT A							
and/or reference	 Singiresu S. Rao, Engineering Optimization -Theory and Practice, New Age International (P) Limited, New Delhi, 2000. H.A. Taha, Operations Research: An Introduction, 5th Edition, Macmillan, New York, 1992. 												
material													
	A. Ravindran,	K. M. Ragsdell an	d G. V. Rel	klaitis, <i>Eng</i>	ineering Op	timization	<i>1</i> -						
	Methods ar	nd Applications, W	iley-India H	Edition, Ne	w Delhi, 200)2.							
	Reference Books	S: Ontimi-atian Acces	lomio Dese	1060									
	2 2 K Deb ℓ	Optimization, Acad	oineerino D	, 1909. Jesion Alom	rithms and F	xamples I	Prentice-						
	Hall of Indi	a Pvt. Ltd. New De	elhi. 1995										
			, 1990.										

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAO853	CO1	2	3	3	2	1	1	2	-	1	-	1	1
	CO2	2	2	3	1	2	-	3	-	1	-	2	1
	CO3	3	2	2	2	2	-	2	-	1	1	2	2
	CO4	3	2	3	3	2	-	3	-	1	1	2	2

Correlation levels 1, 2 or 3 as defined below: